以下文字资料是由(历史认知网 www.lishirenzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与 ... 。希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:1、n = 2k,k = 2, 3,…2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的 ... 解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的 ... 。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个 ... --虽然他当时没有公布--就是「最小平 ... 」 (Method of Least Square)。1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作 ... 。1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

以上内容由历史认知网整理发布(.lishixinzhi.)如若转载请注明出处。部分内容来源于网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

数学家高斯的故事的更多相关文章

  1. 胡克:牛顿剽窃他的研究成果,死不承认,在他死后烧毁他的实验室

    如果说17世界最杰出的科学家是谁?那当然是牛顿莫属。

  2. 一位民国数学家,他身边人全是大师,杨振宁:当年读他文章受教了

    民国时期的大师,多如繁星,每一位都是名满天下的人物,在皓月之光的照耀下,还有一些知名度不那么高的教育家,他们的实力非常强,只是知名度不高罢了,今天野哥的这篇文章,就是为了纪念一位名声传播不那么广泛,但是却一直未我国教育作出贡献的数学家,他的名字叫刘薰宇。杂志面世以来,得到了广大的师生好评,除了刘薰宇等人外,还吸引不少各个领域的大咖来为《中学生》杂志撰稿。

  3. 地球的自转速度,是怎么计算得出的?又是谁算出来的呢?

    答:其实,出处不详,很有可能是古希腊人。

  4. 1500年前的数学家如何计算球体积?中国古代这三位真是数学神仙

    《易·系辞》中说:「”上古结绳而治,后世圣人易之以书契”,说明古人结绳和契刻的方式记数和记事。西安半坡村出土的陶器上有直线、三角、方、菱形及一些复杂的几何图形,同时期人们创造了画圆和画方的工具规和工具矩,中国的数学可以追溯到5000到6000年前。半坡陶符光影图然而,很多人认为中国的古代数学其实不是数学,最多被称为算术或者算学,不同于西方以古希腊为代表的基于逻辑推理下的数学。比如:勾股定理,无论是

  5. 从「 ”轻重缓急”看古代数理文化中的数的维度思考

    轻重缓急这个成语出自清·顾炎武《日知录》卷七:「”古之人有至于张空弮、罗雀鼠而民无二志者,非上之信有以结其心乎?此又权于缓急轻重之间而为不得已之计也。”通常被解释为:各种事情中有主要的和次要的,有急于要办的和可以慢一点办的。这种解释实际并不是很确切。轻重、缓急两个思考的侧面被分隔开来,但是古代的数理文化并非这种理解。轻重缓解的二维思考按照轻重缓急的方式进行的四种分类基于线性逻辑思考,事情可以被这样

  6. 1+1为什么等于2?你真的了解哥德巴赫猜想吗

    陈景润证明的不是1+1=2,也不是1+2=3,这是一个常见的误解。要理解1+1的意思,首先要回到哥德巴赫本身。1742年,哥德巴赫给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,然而一直到死,欧拉也无法证明。

  7. 160年前德国一文科生提出的数学理论,至今无人能够证明

    费马的这一断定,直到他去世300多年后,人们才第做出了一次证明。和上述两位数学家一样神奇的是,德国的一位文科生,像费马一样提出了一个数学猜想,而这个猜想至今还没有人能够证明。根据现有的数据,截止2017年,从哥廷根大学走出的诺贝尔奖获奖人数为45人,数量为德国第2位、世界第15位。

  8. 97岁杨振宁:和爱因斯坦交谈1.5小时,我却没有得到智慧,很遗憾

    我国历史上杨振宁的出现,应该称得上是一个传奇,他23岁留美,在35岁的时候就获得了诺贝尔奖,其成就可想而知。那么他和爱因斯坦是怎样扯上关系的呢?两人在爱因斯坦的办公室里,与他谈了一个半小时。

  9. 砖家解读:天学真原独特的古代中国,古人的宇宙天文认知

    《天学真原》独特的古代中国在《天学真原》第一章「”绪论”中,第一句就说:「”‘天文’一词,今人常视为「”天文学”的同义语,以之对译西文astronomy一词,即现代意义上的天文学。但在古代,‘天文’并无此义。”古籍中较早出现「”天文”一词者为《易经》。并根据《易经》明确古代中国之所谓「”天文”,「”既用以指天象,又引伸出第二义,用以指仰观天象以占知人事吉凶之学问。……‘天文’在古代中国人心目中,其

  10. 他的文史、英语双满分,数学只有0分,被北大拒绝却被清华录取

    提及到我国近代的「”偏科学霸”们,大家心中肯定有很多人选。臧克家先生、钱钟书先生等,都是大家耳熟能详的人物。今天要说的这位「”偏科学霸”却有点儿不一样,让咱们一起来看看有什么不一样吧。这位「”偏科学霸”叫做吴晗。吴晗,浙江省义乌市人。他是我国著名历史学家、社会活动家。尤其是在研究明史上,吴晗是开拓者和奠基者之一。和其他「”偏科学霸”不一样的是,吴晗在小的时候学习并不是一帆风顺。吴晗的父亲是秀才出身

随机推荐

  1. 卑鄙龌龊的成语意思及歇后语 | 成语大全

    中文发音:bēibǐwòchuò。

  2. 纪念击败拿破仑的威灵顿公爵命名 日德兰海战的旗舰 最后结局凄惨

    铁公爵级战列舰是英王乔治五世级战列舰的改进型,该级舰命名为铁公爵,就是为了纪念在滑铁卢战役中领导英军击败拿破仑的英国将领威灵顿而命名,而威灵顿公爵的绰号就是铁公爵。铁公爵号战列舰因为在日德兰海战中是英国海军大洋舰队司令约翰·杰利科海军上将的旗舰而闻名于世。

  3. 阿蒙霍特普三世,人和他的纪念碑:帝国和建筑时代-第二部分

    ,喜欢这个预告,想继续阅读吗?加入我们,看看你错过了什么!!

  4. 功名蹭蹬的意思 | 成语大全

    指应试屡遭挫折成语出处:清–李汝珍《镜花缘》第46回:“谁知这样一个好人,偏偏教他功名蹭蹬!”

  5. 盘点二战时美军的四种机枪:最后一种性能无与伦比,至今仍在用

    第二次世界大战,美国作为主要的参战国,也在战争中投入了庞大的兵力。今天,我们就一起说说美军在二战时使用的四种机枪,最后一种性能无与伦比,即便是今天仍然在使用。M1917重机枪由一战末期成为美军主力重机枪,直至二战在太平洋群岛的争夺战当中仍是主力火力支援武器,在二战之后的局部战争中也有使用。M2系列重机枪是世界上最著名的大口径机枪之一,其性能无与伦比。该枪至今仍在服役,经历了二战及二战后的多场局部战争。

  6. 小书柜——我的精神摇篮

    能够把我初步吸引到文学艺术的趣味方面去的,则是那“总百氏,别九流”的小书柜里的书。说来也奇怪,我在小书柜的藏书当中,比来比去,终于比出最喜欢的就是鲁迅和周作人。)但是,曾经成为我的精神摇篮的,毕竟是那个小书柜。所以我常动人不要低估孩子们的阅读能力和选择能力,要使他们早些接触到各种高级读物而不局限于少年儿童读物,我这样说,是有我那精神的摇篮作凭据的。

  7. 梦见和尚尼姑 梦见和尚尼姑什么意思

    梦见和尚尼姑有现实的影响和反应,也有梦者的主观想象,请看下面由小编帮你整理的梦见和尚尼姑的详细解说吧。女人梦见与和尚或尼姑说话,预示家庭和睦,婆媳关系良好,生活愉快。女人梦见与尼姑吵架,可能预示家人中会遇到困难或欺侮,或声名受损。《历史新知》心理学解梦梦境解说:尼姑是特殊人群里的一类,她们无欲无求,同样,她们也一无所有。因此,尼姑在梦中代表清贫。

  8. 金毛狮子

    主考官员在科举考试中出了个题目叫“今茅塞子之心矣。”(今天你的心里好像被茅草堵塞住了啊。)一个差吏走出试场,别人问:“今天出的什么考题?”

  9. 表示很爱一个人的成语 | 历史新知网

    表示很爱一个人的成语无微不至嘘寒问暖关怀备至呵护至极海誓山盟情投意合体贴入微形容特别爱一个人的成语无可救药朝思暮想情难自禁难以自拔“病”入膏肓昏天黑地魂牵梦绕表达一个人对另一个人爱情的忠诚始终如一的成语从一而终!

  10. 出家成道的果报

    出家成道的果报佛经云:人以有二十难,贫穷布施难、豪贵学道难……波斯匿王马上做了决定,一方面也想一睹这位比丘的容貌。但是,当这位比丘出来时,波斯匿王简直无法忍受再看他一眼,“天啊!天下竟有这般丑陋的人!”波斯匿王疑惑的长跪合掌,请佛陀解答他的疑问,于是佛陀说起了...比丘过去生的因缘……但是也因为这样虔敬的发愿,至诚的供养,不但获得五百世清净动人的妙音声,更感得今世随佛出家成道的果报。

返回
顶部