以下文字资料是由(历史认知网 www.lishirenzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!
摘要:在一个叫做数论的领域里,船员们确实解决了其他一些小问题。它的有效性已成为数学中最著名的开放性问题之一。)[5个令人难以置信的数学事实]这个想法是从哪里来的早在1859年,德国数学家BernhardRiemann就提出了一个特别棘手的数学方程的答案。但现在要知道的重要一点是,如果黎曼假设是真的,它在数学上回答了很多问题。这个技巧的作用,她说,使许多数学家相信黎曼假设一定是正确的。
一个数学家团队在回答一个有160年历史、价值百万美元的数学问题上迈出了一大步吗可能是
。在一个叫做数论的领域里,船员们确实解决了其他一些小问题。在这样做的过程中,他们重新开辟了一条古老的道路,这条道路可能最终会回答一个古老的问题:黎曼假设是否正确?”
Reimann假设是一个基本的数学猜想,它对数学的其余部分有着巨大的影响。它为许多其他数学思想奠定了基础——但没有人知道它是真的。它的有效性已成为数学中最著名的开放性问题之一。这是2000年提出的七个“千年问题”之一,承诺无论谁解决了这些问题,都将赢得100万美元。(只有一个问题已经解决了。)[5个令人难以置信的数学事实]
这个想法是从哪里来的早在1859年,德国数学家Bernhard Riemann就提出了一个特别棘手的数学方程的答案。他的假设是这样的:Riemann-zeta函数的每个非平凡零的实部是1/2。这是一个相当抽象的数学语句,它与你可以把什么数字放入一个特定的数学函数中,使该函数等于零有关。但事实证明这是非常重要的,最重要的是关于当你数到无穷大时你会遇到质数的频率的问题。我们稍后会回到假设的细节。但现在要知道的重要一点是,如果黎曼假设是真的,它在数学上回答了很多问题。
“在数论中经常出现的情况是,如果你假设黎曼假设是真的,那么你就能够证明所有其他的结果,”洛拉·汤普森,俄亥俄州奥伯林学院的一位没有参与这项最新研究的数字理论家说,
她告诉《生活科学》,如果黎曼假设是真的,数字理论家将首先证明某些东西是真的。然后,他们会用这个证明作为一个更复杂的证明的垫脚石,这表明他们最初的结论是正确的,不管黎曼假设是否正确。
这个技巧的作用,她说,使许多数学家相信黎曼假设一定是正确的。
但事实是没人确切知道。
是向证明迈出的一小步吗那么,这个小的数学家团队是如何使我们更接近一个解决方案的呢“我们在论文中所做的工作,”埃默里大学的数字理论家、新证明的合著者Ken Ono说,“我们重新讨论了一个非常技术性的标准,它相当于黎曼假设……我们证明了它的很大一部分。我们证明了这个标准的很大一部分。a“标准相当于黎曼假设”,在这种情况下,指的是一个单独的陈述,在数学上等同于黎曼假设。
乍一看,这两个陈述为何如此相连并不明显。(这一标准与“Jensen多项式的夸张性”有关)但是在20世纪20年代,匈牙利数学家George Pólya证明了如果这个标准是真的,那么Riemann假设是真的,反之亦然。这是一条证明假说的老路,但已经基本被抛弃了。
小野和他的同事们,在5月21日发表在《自然科学院学报》(PNAS)上的一篇论文中,证明了在许多情况下,这个标准是正确的。
但是在数学上,很多还不足以算作一个证据。在有些情况下,他们仍然不知道这个标准是真是假。
“就像玩一个百万数字的强力球,”小野说你知道除了最后20个数字以外的所有数字。如果最后20个数字中有一个是错的,你就输了。…它仍有可能崩溃。
研究人员将埃德提出了一个更先进的证据来证明这个标准在所有情况下都是正确的,从而证明了黎曼假设。小野说:“现在还不清楚这样的证据有多远,所以,这篇论文有多重要?”“根据黎曼假设,很难说这有多重要。很大程度上取决于接下来会发生什么。
“这个[标准]只是黎曼假设的许多等价公式之一,”汤普森说。
换句话说,还有很多其他的想法,像这个标准,会证明黎曼假设是正确的,如果他们自己被证明。
所以,很难知道这有多大的进展,因为一方面它在这个方向上取得了进展。但是,有很多等价的公式,也许这个方向不会产生黎曼假设。汤普森说:“如果有人能证明其中的一个,那么其他等价定理中的一个可能会被取代,如果证明沿着这条轨道出现,那么这可能意味着小野和他的同事们已经为解决黎曼假设开发了一个重要的基础框架。”。但是如果它出现在其他地方,那么这篇论文就变得不那么重要了。
仍然给数学家留下了深刻的印象。
虽然这离证明黎曼假设还有很远的距离,但这是向前迈出的一大步,”普林斯顿的一位没有参与该小组研究的数字理论家Encrico Bombieri说,在5月23日的PNAS文章中写道。”毫无疑问,这篇论文将在数论和数学物理学的其他领域激发进一步的基础性工作。
(1974年,Bombieri获得了菲尔兹奖——数学界最负盛名的奖项),在很大程度上与黎曼假设相关的工作。
黎曼假设到底是什么意思“我答应过我们会回到这里的。这里又是黎曼假设:黎曼-泽塔函数的每个非平凡零的实部是1/2。让我们根据汤普森和小野的解释来分解它。
首先,黎曼-泽塔函数是什么在数学中,函数是不同数学量之间的关系。一个简单的例子可能是这样的:y=2x.
Riemann-zeta函数遵循相同的基本原理。只是事情要复杂得多。下面是它的样子。
Riemann zeta函数(Wikimedia commons)是一个无限序列的和,其中每个项-前几个是1/1^s、1/2^s和1/3^s-被添加到前面的项中。这些省略号意味着函数中的级数永远保持这样的状态。
现在我们可以回答第二个问题:什么是Riemann-zeta函数的零
这更简单。函数的“零”是可以为x输入的任何数字,它使函数等于零。
下一个问题:其中一个零的“实部”是什么,它等于1/2意味着什么
Riemann zeta函数包含数学家所称的“复数”。复数看起来是这样的:A+b*i。
在等式中,“A”和“b”代表任何实数。一个实数可以是从-3到0,再到49234,π或10亿。但还有另一种数字:虚数。当你取负数的平方根时,虚数就会出现,它们很重要,出现在各种数学上下文中。[10关于π的令人惊讶的事实]
最简单的虚数是-1的平方根,它被写成“i”。复数是实数(“A”)加上另一个实数(“b”)乘以i。复数的“实部”是“A.”
Riemann zeta函数的几个零,负整数在-10和0之间,别指望赖曼假设。这些被认为是“平凡”的零,因为它们是实数,而不是复数。所有其他零都是“非”-“平凡的”和复数。
Riemann假设指出,当Riemann-zeta函数越过零时(除了-10和0之间的那些零),复数的实部必须等于1/2。
这一小小的声明听起来可能不是很重要。但确实如此。“KDSPE”最初是在活科学上发表的。“KDSPE”是现存的最大量的9个数字,它们比PI照片更酷:定义宇宙的大数。
特别申明:本文内容来源网络,版权归原作者所有,如有侵权请立即与我们联系(devmax@126.com),我们将及时处理。