以下文字资料是由(历史认知网 www.lishirenzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!
摘要:萨克马斯特克/Shutterstock)中国科学家刚刚打破了一项远程传输记录。不仅创造了量子隐形传态距离的记录,还表明人们可以建立一个实用的远距离量子通信系统。这是朝着全球范围量子通信迈出的一大步。同样,当一个人测量纠缠二重奏中一个粒子的状态时,你会自动知道第二个粒子的状态。但科学家们并没有真正揭示这些状态。这项研究发表在7月4日的ArXiv上。
中国科学家刚刚打破了一项远程传输记录。不,他们没有把任何人送上太空船。相反,他们从 ... 向距地球表面870英里(1400公里)的在轨卫星发送了一包信息,科学家们将一个光子的量子态(关于它如何极化的信息)发射到轨道上。
不仅创造了量子隐形传态距离的记录,还表明人们可以建立一个实用的远距离量子通信系统。这样的通信系统不可能在没有提醒用户的情况下窃听,这将使在线通信更加安全。
这样的实验以前已经做过,但是澳大利亚布里斯班格里菲斯大学量子动力学中心主任霍华德·怀斯曼在一封电子邮件中告诉《现场科学》这项技术拓展了这项技术的可能性。他说,【10位未来科技《星际迷航》的粉丝很想看到】
“这要困难得多,因为这是一个快速移动的目标,而你的量子探测器就在太空中,它们必须在没有任何人摆弄的情况下工作。”这是朝着全球范围量子通信迈出的一大步。
幽灵对这个实验利用了描述量子力学的几种现象之一:纠缠,或者阿尔伯特爱因斯坦所说的“远处的幽灵行为”。当两个粒子纠缠在一起时,它们保持连接,因此对其中一个执行的操作也会影响到另一个,不管这两个粒子之间的距离有多远。同样,当一个人测量纠缠二重奏中一个粒子的状态时,你会自动知道第二个粒子的状态。物理学家称这些状态为“相关”,因为如果一个粒子——例如光子——处于“向上”状态,那么它的纠缠伙伴将处于“向下”状态——一种镜像。(严格地说,这两个粒子有四种可能的组合)。
奇怪的是,一旦第一个粒子的状态被测量出来,第二个粒子不知怎么地“知道”它应该处于什么状态。信息似乎是瞬间传递的,没有光速限制。【8种在现实生活中可以看到爱因斯坦相对论的方式】
传送信息6月份,同一研究人员报告了量子隐形传态的另一个壮举:他们将纠缠光子从Micius卫星发送到距离994英里到1490英里(1600到2400公里)的两个地面站,取决于卫星在其轨道上的位置。虽然这个实验表明纠缠可以发生在很长的距离内,但新的实验利用这个纠缠将光子的量子态传输到一个遥远的位置。
在他们的最新实验中,由上海科技大学的任志刚领导的中国团队从 ... 的一个地面站向在轨卫星发射了一束激光。激光束携带着一个与地面上另一个光子纠缠的光子。然后他们将地面上的光子与第三个光子纠缠起来,测量它们的量子态。但科学家们并没有真正揭示这些状态。他们只是问他们的状态(在这种情况下,他们的垂直或水平极化)是相同还是不同。有四种可能的组合:垂直垂直、垂直水平、水平垂直和水平水平水平。由于地面上的粒子状态与卫星上的粒子状态相关,同时观察卫星光子的观测者会知道,光子必须处于与地面上的两个光子相关的四种可能状态之一。
如果有人乘坐卫星,一旦他们是告诉他们地基光子的状态是相同或不同的,他们知道的足够多,能够重建地基光子的状态在船上的单光子中复制。地面上的光子会被传送到轨道上。
虽然听起来信息的传输速度比光快,但无法将此属性用作即时消息传递系统。这是因为即使纠缠粒子的状态是相关的,在你测量它们之前你不能知道它们是什么,也不能控制它们的状态。
但是纠缠粒子能做的是充当消息的完美身份验证器。原因是观察一个粒子的行为改变了它的行为。如果窃听者在最近的实验中试图拦截卫星和地面之间的传输,光子的量子态(由科学家测量)将不会正确关联。
中国团队设法使纠缠在310英里(500公里)到870英里(1,400公里),卫星的最大距离。这比任何人发送纠缠态都要远。纠缠光子在到达目的地的路上不能与其他任何东西相互作用,因为一旦它们相互作用,它们的状态就被“观察”到了——这是相互作用所揭示的。因此,如果光子在到达目的地之前被观测到,那么远距离传送就不起作用。当科学家们进行这样的实验时,他们不仅仅一次发送一个光子;要获得他们想要的测量结果,他们需要发送大量的光子。研究显示,即使在太空的真空中,在发送的数百万光子中,卫星也只能可靠地接收其中的911个光子。[信息图表:量子纠缠是如何工作的]
如果这些相同的光子是通过光纤电缆而不是通过空间发送的,那么光子之间的连接将被来自诸如热和振动等因素的干扰,甚至与电缆的随机相互作用所破坏。因此,从纠缠光子获得测量可能需要3800亿年。另一方面,卫星在大气层外,纠缠光子被破坏的可能性要小得多。
“有了光纤,你就失去了许多光子,”NTT基础研究实验室的资深研究科学家Bill Munro在接受Live Science采访时说。将光子发射到轨道意味着您可以构建一个实际的通信系统。”你可以从中国发射光束到华盛顿或纽约。“减少对信号的干扰,让更多的光子通过的问题,”蒙罗说,是一个可以解决的技术和工程问题。
蒙罗和怀斯曼都指出,人们通常认为远距离传送是将一个实际物体(或光子)从一个地方移动到另一个地方。”“人们有这种‘星际迷航’的方式,”蒙罗说他们认为原子是被传送的。我们正在移动的是从一个[量子]比特到另一个[量子]比特的信息。没有任何重要的信息。这很难让你理解。
这项研究发表在7月4日的ArXiv上。
最初发表在《生命科学》上。
特别申明:本文内容来源网络,版权归原作者所有,如有侵权请立即与我们联系(devmax@126.com),我们将及时处理。